Feeds:
Posts
Comments

Posts Tagged ‘geopolymer house’

Easy Chanvre hemp block building system

Easy Chanvre hemp block building system


To meet 21st century environmental, economic, and social constraints, the construction sector has to focus on new materials that meet:
* climate demands (fighting CO2 releases),
* saving of fossil fuel resources,
* use of renewable raw materials,
* conservation of water resources,
* respect for biodiversity.

Use of these ecomaterials allows:
Reduced costs of use,
Creation of new jobs,
Waste-free job site management,
A healthy habitat (air quality, water).
Blocks and slabs made of hemp concrete are molded industrially and dried naturally in our factory.

Source: Easy Chanvre

Read Full Post »

Geopolymers – Alkali Activated Composites for Encapsulation of Intermediate Level Wastes

Geopolymers – Alkali Activated Composites for Encapsulation of Intermediate Level Wastes


Source: Immobilization Science Laboratory

Read Full Post »

Abstract
“Geopolymer cements offer an alternative to, and potential replacement for, ordinary Portland cement (OPC). Geopolymer technology also has the potential to reduce global greenhouse emissions caused by OPC production. There is already a considerable amount of work and research conducted on geopolymers in the past decades, and it is now possible to implement this technology commercially. However, to ensure that geopolymer becomes commercially available and able to be used in the world, further understanding of its ability to provide durable and long lasting materials is required. One main property which is still relatively unexplored compared to other properties is its shrinkage properties. The objective of this thesis is therefore to examine the shrinkage of geopolymers and factors which might influence it.

The factors which influence geopolymer strength were investigated as being the factors which may influence shrinkage. The selection of the activating solution is an important factor in forming the final product of a geopolymer. Activating solution SiO2/Na2O ratio is determined to be an important influence on the shrinkage of geopolymer. SEM images of the samples enable observation of the sample topology and microstructure. An important observation was the existence of a ‘knee point’ which also occurs in OPC shrinkage. The ‘knee point’ is the point where the shrinkage goes from rapid shrinkage to slow shrinkage. From SEMs it is noted that the samples past the knee point are shown to have a smoother topology which means it is more reacted.”

Source: Melbourne University Library

Read Full Post »



I prefer low tech, low cost approaches, but it’s fun to consider larger scale solutions and what could happen in the future.

Read Full Post »

Abstract
This paper presents the findings of an experimental investigation to study the effect of alkali content in geopolymer mortar specimens exposed to sulphuric acid. Geopolymer mortar specimens were manufactured from Class F fly ash by activation with a mixture of sodium hydroxide and sodium silicate solution containing 5% to 8% Na2O. Durability of specimens were assessed by immersing them in 10% sulphuric acid solution and periodically monitoring surface deterioration and depth of dealkalization, changes in weight and residual compressive strength over a period of 24 weeks. Microstructural changes in the specimens were studied with Scanning electron microscopy (SEM) and EDAX. Alkali content in the activator solution significantly affects the durability of fly ash based geopolymer mortars in sulphuric acid. Specimens manufactured with higher alkali content performed better than those manufactured with lower alkali content. After 24 weeks in sulphuric acid, specimen with 8% alkali still recorded a residual strength as high as 55%.

Source: Waset.org

Read Full Post »

A house boat similar to this but with a shallow rooftop garden and solar panels would provide a very livable structure for a mobile, adventurous lifestyle.

A house boat similar to this but with a shallow rooftop garden and solar panels would provide a very livable structure for a mobile, adventurous lifestyle.


You’ve got to love the Internet. You can find just about anything with enough time and effort. I wrote about my seasteading idea the other day. This got me wondering about the best places to seastead. A quick search turned up world maps of Tracks and Intensity of All Tropical Storms and Wave Heights at Seasteading.org. This is a great site. They seem to have all the answers on seasteading.

A quick search for house boats located the photo above on Wiki. A locally made boat like this might be quite reasonable in cost.

Be sure to take a look at The World of Ferro-cement Boats. Their website says “Ferro-cement boats built before 1855 are still in existence and at least one is still afloat. It is the cheapest and easiest form of construction for boats over 25 ft.” They have lots of information that will likely prove invaluable – building directions, galleries, a forum, and plans and boats for sale.

Floating Dirt Seastead is another good site with lots of interesting ideas for do-it-yourself seasteaders on a tight budget.

California Concrete Canoe, a contest for engineering students, is another good resource.

How many reasons do you need to live or vacation in a tropical paradise like Tahiti?

How many reasons do you need to live or vacation in a tropical paradise like Tahiti?


Image source: About.com

Read Full Post »

I’m currently researching the feasibility of building floating structures made of geopolymer. Most of the designs/plans I’ve read about so far are for expensive floating cities and luxury rentals. I’m still looking for a practical DIY model for the average guy. One possibility is building a raft that can be towed with a boat. The raft would provide food production (floating garden), potable water storage and additional living space at fairly low cost.

This seasteading concept is just an interesting idea at this time, but it’s worth contemplating because there are lots of benefits. Here are a few structural considerations:
– Build the raft in a safe area with very low risk of piracy, hurricanes, storms and tsunamis. You will need to collect rainwater and/or have access to fresh water.
– Design possibility #1: build modular, geopolymer or foamed geopolymer blocks that are joined together to create the desired size. Hollow core ferrocement blocks could be cast in a reusable form. The core could be filled with sealed, recycled plastic bottles or foam.
– Design possibility #2: use recycled barrels to make something similar to design #1 by casting foamed geopolymer around the barrel. Fill the barrel with recycled plastic bottles or foam. Attach strips of rubber tires between barrels where they contact each other and the deck. Add more ferrocement barrels at any time to expand the size. Build a deck on top with local wood or possibly plastic lumber. http://en.wikipedia.org/wiki/Plastic_lumber
– Design possibility #3: Retrofit a houseboat with a rooftop garden.

Why choose seasteading? The links below go into all the details. Here are a few benefits described at Seasteading – Homesteading the High Seas.
“Why would anyone want to colonize the ocean surface? There are a number of reasons — adventure, religious freedom, tax avoidance, trying out new forms of government, etc. Of the ones listed, tax avoidance is my pick as the most powerful motivator for the development of sea surface colonization technology.”

Floating Concrete Shell Structures
Seasteading Institute
Seasteading Forum

Read Full Post »

Older Posts »